Project Background

- Designing Walkable Urban Thoroughfares: A Context Sensitive Approach (2010)
- Produced by FHWA/EPA/CNU/ ITE
- Recommended Practice, focus on new ideas and needs

@CompleteStreets

Limitations

- 2010 vs. 2017 → Differences in understanding CSS and Complete Streets
- Some difficulty adapting recommended practices to local contexts
- RP focus on design, less so on policy and process
- Lack of strong guidance for suburban-type areas

@CompleteStreets

This Publication

- Implementing Context Sensitive Design on Multimodal Corridors: A Practitioner's Handbook
- Produced by FHWA/ITE
- Informational Report, focus on adapting to new information and audiences

Project Goals

- User-friendly, graphically-rich application guide
- Expand and enhance the content of the ITE RP and the NACTO Guide through case studies
- Demonstrate successful practical applications
- Solutions with multimodal focus (ped, bike, freight)

@CompleteStreets

Content Development and Review

- Technical Editor: Nelson\Nygaard
- Case Studies: CNU
- FHWA Office of Planning, Environment, Realty
- 30+ Subject Matter Experts

- AASHTO
- AMPO
- ITE Complete Streets
 Council
- ABPB
- US Access Board
- Smart Growth America
- Independent Truckers (OOIDA)
- Development and Land Use (NADO)
- Freight & Research
 Communities

@CompleteStreets

Reception and Feedback

- Launch webinar in November 2017
- FHWA dissemination and promotion
- Over 700 copies downloaded since launch
- Positive feedback, innovation with "mature" case studies

Managing Transition A Practitioner's Guide to Multimodal Thoroughfare Design

December 11, 2018 Implementing Context Sensitive Design

@CompleteStreets

Why Another Guide?

Strong, Clear Urban Guidance

3

Other Contexts Are Harder To Discern

Things The Green Book Says:

- Provisions should be made, because pedestrians are the lifeblood of our urban areas.
- There are **important differences between** the design criteria applicable to **low- and high-speed** designs.
- Use simple designs that minimize crossing widths and minimize the use of more complex elements such as channelization and separate turning lanes.
- On lower speed facilities, use of above-minimum design criteria may encourage travel at speeds higher than the design speed.

Our Communities Don't Fit a Mold

53% of Americans describe where they live as suburban

URBAN/SUBURBAN DESIGNATIONS, BY CITY Urban Areas Suburban Areas 100% 100% 97% 87% 67% 63% 60% 49% 35% Angeles Antonio 30% Philadelphia Diego New York Jose Chicago Houston Phoenix Dallas San San San OS

Implementing Context Sensitive Design

@CompleteStreets

Places Are Not Static

Design Process

- 1. Define Problem
- 2. Document Physical and Policy Context
- 3. Identify Process and Stakeholders
- 4. Analyze Collaboratively
- 5. Manage Communication

Design Process

- 1. Define Problem
- 2. Document Physical and Policy Context
- 3. Identify Process and Stakeholders
- 4. Analyze Collaboratively
- 5. Manage Communication

Pre-Design Activities

Part 1 - Pre-Design: Defining The Problem

Pounds of CO2 Per Person-Mile

Annual Transportation Cost by Mode

Transportation Mode

@CompleteStreets Implementing Context Sensitive Design

California's DOT Admits That More Roads Mean More Traffic

Take it from Caltrans: If you build highways, drivers will come.

ERIC JAFFE | 💆 @e_jaffe | Nov 11, 2015 | 🗭 331 Comments

Results Over the Last 50 Years

- 1. Vehicle Miles of Travel (VMT) Growing Faster Than Population Growth
- 2. Longer Commute Times
- 3. Decreased Transit Ridership

Public Health Impacts

- Cardiovascular: Heart Attack
 - Stroke
- Respiratory: Asthma
- Weight Related: Diabetes II
 - Heart Disease

Emphysema

• Environmental: Cancer & other

diseases

Fat for Life? Six Million Kids Are Seriously Overweight. Asthma outbreak hits kids wley & Sharon RISKS OF THE 'RED ZONE' *chronic*" 15

@CompleteStreets Implementing Context Sensitive Design

1. Traffic Growth Rate – Be Realistic...Don't Preclude Success

Measure, Don't Just Project Traffic

1. Traffic Growth Rate – Be Realistic...Don't Preclude Success 2. Planning Horizon – Select Thoughtfully

[@]CompleteStreets Implementing Context Sensitive Design

- 1. Traffic Growth Rate Be Realistic...Don't Preclude Success
- 2. Planning Horizon Select Thoughtfully
- 3. "Success" Metrics Know Your Market
 - 1. Level of Service vs. Travel Time
 - 2. Auto-Only vs. Multi-Modal
 - 3. Traditional Analysis vs. Broadly-Focused

Level of Service A

@CompleteStreets

Level of Service F

@CompleteStreets

Strategy 1: Observation Studies

@CompleteStreets Implementing Context Sensitive Design

Strategy 2: Safety Analyses (Vision Zero)

MOL

@CompleteStreets Implementing Context Sensitive Design

Strategy 3: Future-Proofing

• Plan For Horizon Demographics

Baby Boomers

Projected Growth in Population Age 65 and Older by State, 2010-2020 (Percent)

Source: Brookings Institute analysis of 2010 Census Bureau population projections.

Licensed Drivers by Age Group

Source: Michael Sivaka & Brandon Schoettlea, "Update: Percentage of Young Persons With a Driver's License Continues to Drop." Traffic Injury Prevention, Volume 13, Issue 4, 2012. Page 341.

Strategy 3: Future-Proofing

- Plan For Horizon Demographics
 Population About Funding
- Be Realistic About Funding

Funding

Strategy 3: Future-Proofing

- Plan For Horizon Demographics
- Be Realistic About Funding
- Build In Autonomy Triggers

Driverless Cars

The Shift In Mobility

Transportation Management Platforms

lance from

Work

Schedule

Origing to Work

Oppart: # 02 AM

Arrive: 9:00 AM

Depart: 5:00 AM Depart: 3:00 PM

Schedule

Driving Home

Depart: 5:00 PM

Arrive: 5:30 PM

1000

Look out for your card in the

Kon 🚯 Bike

1000

New Mobility Is About Curb Management

Part 2 - Modes and Networks – The Physical and Policy Context

5 Gallons

10 Gallons

Street Users		
	Needs	Wants
Cars	Capacity	Speed
Peds	Safety	Comfort
Transit	Frequency	Reliability
Bikes	Space	Separation

Primary Tradeoff Drivers

- 1. Mobility Function
- 2. Modal Emphasis
- 3. Context

FOUR TYPICAL STREET TYPES

FOUR TYPICAL LAND USE TYPES

Tradeoff Tools: Zones

Tradeoff Tools: Function-Driven Zones

Tradeoff Tools: Context-Driven Zones

1. Mobility Function

@CompleteStreets

Implementing Context Sensitive Design

1. Mobility Function

@CompleteStreets

Implementing Context Sensitive Design

2. Modal Emphasis

Successful Transit Must Be

1. Convenient

Successful Transit Must Be

Convenient
 Safe & Comfortable

Successful Transit Must Be

Convenient
 Safe & Comfortable
 Reliable

"YEAH, WE'VE HAD TO CUT SOME ROUTES ... "

Context (Urban Form) Matters

Walk Bike Transit

Automobile

"First/Last Mile" Options Are Often Poor

Will People Ride Bikes?

Cyclists Are Not Monolithic

Bike Travelers

• Who is the market?

Bike Travelers

• Who is the market?

@CompleteStreets

Implementing Context Sensitive Design

3. Identifying Context

Speed

• for two-lane highways, speed decreases linearly with increasing flow rate over the entire range of flow rates between zero and capacity.

Design Speed

Design speed is a selected speed used to determine the various geometric design features of the roadway. The assumed design speed should be a logical one with respect to the topography, anticipated operating speed, the adjacent land use, and the functional classification of highway. Except for local streets where speed controls are frequently included intentionally, every effort should be made to use as high a design speed as practical to attain a desired degree of safety, mobility, and efficiency within the constraints of environmental quality, economics, aesthetics, and social or political impacts. Once the design speed is selected, all of the pertinent highway features should be related to it to obtain a balanced design. Above-minimum design values should

TODAY

IN 5 YEARS

@CompleteStreets

59

Context May Not Be Temporally Constant

Context May Not Be Temporally Constant

Network Strategy 1: Break Down The Blocks

Network Strategy 1: Break Down The Blocks Lanes

More Capacity

Relationship Between Unimpeded Block Length and Speed

Network Strategy 2: Look For Efficiency

Lane Capacity

Capacity of Additional Through Lane (VPH)

Strategy 3: Use The Network

@CompleteStreets Implementing Context Sensitive Design

Abercorn Street - Historic District

@CompleteStreets Implementing Context Sensitive Design

68

Abercorn Street: Suburban Pattern

Abercorn Street: Retail Mall District

@CompleteStreets Implementing Context Sensitive Design

70

Part 3 - Safety and Walkability: Process and Tools

Stakeholders and Outreach

@CompleteStreets

Implementing Context Sensitive Design

Speed Matters – (See Next Section)

@CompleteStreets Implementing Context Sensitive Design

How much safer are livable streets?

@CompleteStreets
Implementing Context
Sensitive Design

- Per vehicle mile traveled:
 - 40% fewer midblock crashes than roadway averages.
 - 67% fewer roadside crashes than roadway averages.

- Examined lengths of arterials in 3 small metro regions:
- Substantial design variation:
 - Pedestrian-oriented "livable" streetscape in downtown core.
 - Conventional suburban.
 - Suburban/rural transition.

Source: Eric Dumbaugh, Texas A&M

Common Situations The "Escape Route" The Transit "Arterial"

@CompleteStreets Implementing Context Sensitive Design

Scale Myth: Some Streets Only Feel Big

Scale Myth: Some Streets Only Feel Big

Activity (Driven By Density) Implementing Context Sensitive Design

Crossing Toolkit 1: Safety Standards

Guidelines for Crosswalk Installation on Streets with Speed Limit of 30mph or Below

Pedestrian Crossings

Crossing Toolkit 2: Policies and Priorities

Set Spacing Standard

Prioritize Locations

Speed Limits Above 30mph

Should be well under 1000' in any walkable context

<u>Generator Component</u> Transit Stops (Boarding Thresholds?) Jobs Centers (Density Definition?) Schools

<u>Risk Component</u> Spacing (Tied to Typology?) Speed Width

Crossing Toolkit 3: Warrants

From MUTCD:

- They (traffic signals) are used to interrupt heavy traffic at intervals to permit other traffic, vehicular or pedestrian, to cross. Pedestrian Warrant
- The Pedestrian Volume signal warrant is intended for application where the traffic volume on a major street is so heavy that pedestrians experience excessive delay in crossing the major street.
- The criterion for the pedestrian volume crossing the major street may be reduced as much as 50 percent if the 15th-percentile crossing speed of pedestrians is less than 3.5 feet per second.
- School Warrant and Progression Warrant Pedestrian Hybrid Beacon
- A pedestrian hybrid beacon may be considered for installation to facilitate pedestrian crossings at a location that does not meet traffic signal warrants. 86

Crossing Toolkit 4: Legibility

Speed Management: Process and Tools

Myth: Freeways Are Efficient

Reality: Good At Certain Things

"Metro areas that invested heavily in road capacity expansion fared no better in easing congestion than metro areas that did not. Trends in congestion show that areas that exhibited greater growth in lane capacity spent roughly \$22 billion more on road construction than those that didn't, yet ended up with slightly **higher** congestion costs per person, wasted fuel, and travel delay."

-Surface Transportation Policy Project

Speed Myth: Speed vs. Capacity

NACTO

Speed Reduction Mechanisms

Cities can achieve a reduction in traffic speeds using a variety of traffic calming techniques. While certain speed controls alter the configuration of a road way, others change its operation, impacting

motorists through regulation, signalization, and right of way. Consider the following tools to encourage motorists to drive at target speeds.

Median

Medians create a pinchpoint fortraffic In the center of the road way and can reduce pedestrian crossing distances.

Choker

Chokers or Pinchpoints restrict motoris to from operating at high speeds on local streets and significantly expand the sidewalk realm for pedestrians.

Chicane

Oficanescreate a "yold" street by atternating parking or curb extensions. along the corridor.

Lane Shift A lane shift horizontally deflects a vehicle and may be designed with striping, curbextensions, or parking,

Speed Bump Speedhumpsvertically deflect vehicles and maybe combined with midhlock cross walk.

2-WayStreet

+

a corridor.

Signal Progression

2 way streets, especially those with narrowerprofiles, encourage in dioris to be more cautious and wary of oncoming traffic.

Roundabou t Roundabouts reduce traffic speeds at intersections by fording motorists to move with caution through conflict points.

Diagonal Diverter A dagonal diverterbreaks up the steet grid, while maintaining permeability for pedestrans and bicy dists.

Signals timed to a street's target

speed can create lower speeds along

On-Street Parking On-street pailing narrows the street and slows traffic by creating friction for moving vehicles.

@CompleteStreets

Implementing Context Sensitive Design

T4ntersection Closing a minor street to create a T-intersection breaks up the street grid, while adding a public plaza along an underutilized street segment.

Street Trees Trees narrowa drivers visual field and create rhythm along the street.

Space Myth: The Cars in MY City Are Huge!

5.8'

6.6'

Ladder Truck

7-8' Stabilizers 12-16'

@CompleteStreets Implementing Context Sensitive Design

What Makes Drivers Slow Down?

Design Speed vs. Operating Speed

- Selection of design speed controls:
 - Horizontal curvature
 - Vertical curvature

Speed Selection

Design Engineers: Design Speed (60 mph) - 5

Speed Selection

Design Engineers: Design Speed (60 mph) - 5

Design Speed (100 mph) - 5

Risk vs. Reward

- Risk:
 - Design of street/street type
 - Weather
 - Presence of pedestrians/cyclists
 - Vertical elements (trees, buildings, etc.)

Risk vs. Reward

- Risk:
 - Design of street/street type
 - Weather
 - Presence of pedestrians/cyclists
 - Vertical elements (trees, buildings, etc.)
- Reward:
 - Decreased travel time

Design Speed vs. Operating Speed

- Selection of design speed controls:
 - Horizontal curvature
 - Vertical curvature
- Design elements that affect operating speed:
 - Multilane Cartways
 - Lane width
 - Edge activity
 - Vertical elements

Areas of Successful Road Diet Implementation - Collision			
Location	Street	Change	Collision Reduction
Seattle, WA	8th Avenue, NW, in Ballard Area	4 Lanes to 3	18 to 7 61%
Seattle, WA	24th Avenue, NW, From NW 85th St. to NW 65th Street	4 Lanes to 3	14 to 10 28%
Seattle, WA	Dexter Avenue, N, East side of Queen	4 Lanes to 3	19 to 16 59%
Seattle, WA	Greenwood Avenue	4 Lanes to 3	24 to 10 58%
Seattle, WA	North 45th Street	4 Lanes to 3	45 to 23 49%
Seattle, WA	Martin Luther King Jr. Way, North of I-90	4 Lanes to 3	15 to 6 60%

Minneapolis Lane Removals

Bike Lanes and Traffic in Minneapolis Ratio of traffic volume to capacity on 10 roads 25 50 75 0% 100 Before After 19th Ave. S bike lane bike lane Franklin Ave. E Blaisdell Ave. 10th Ave. SE Plymouth Ave. N HEAVY Minnehaha Ave. CONGESTION 16th St. E SEVERE CONGESTION 1st Ave. S 27th Ave. SE Oak Lane N S FIVETHIRTYEIGHT BASED ON MINNESOTA DEPARTMENT OF TRANSPORTATION DATA

Strategy 2: Lane Width Adjustment

Plan

Knox St, Dallas (Demonstration Project)

Lane Widths and Speed

Knox St, Dallas (Demonstration Project)

The bike lanes may only be incidental, but you still get them.

@CompleteStreets

Implementing Context Sensitive Design

Strategy 3: Amenitize The Space Saved

VENDU

@CompleteStreets Implementing Context Sensitive Design

Bicycle Parking or Infrastructure

Dedicated Transit Lanes/Stops

Public Space

More Vehicle Lanes

@CompleteStreets Implementing Context Sensitive Design

Pittsburgh Street Design Guidelines

@CompleteStreets Implementing Context Sensitive Design

THANK YOU Paul Moore Nelson\Nygaard 213.785.5500

